Strengthening Resilience of Flood and Drought Management against Climate Change

- Pilot Project at the Solo River -

February 26, 2020 ICHARM

Goal

Make society resilient and Minimize Damage of Water Related Disasters

Objective of the Pilot Project

Establish Climate Change Adaptation Plan on the Solo River

Activities

- 1) Data integration
- 2) Climate change impact assessment
- 3) Climate change adaptation Flood management
- 4) Climate change adaptation Agricultural productivity improvement

IFI Platform activities in Indonesia

Core member of the Platform

•	Ministry of Public Works and Housing (PUPR)	River Management
•	National Disaster Management Authority (BNPB)	Disaster Information
•	Meteorological, Climatological, and Geophysical Agency (BMKG)	Meteorological Observation
•	Ministry of Environment and Forestry (KHLK)	River Basin Management (Forest)
•	Ministry of Agriculture (MoA)	Irrigation, Food security

2018.1.15	Consultation for establishing the Platform
2018.8.3	Consultation for establishing the Platform
2018.10.24-26	11th GEOSS AP Symposium in Kyoto
2018.12.4-6	Consultation for establishing the Platform and Field Survey
2019.1.28	Consultation for establishing the Platform(Proposal of adding KLHK)
2019.3.12	Consultation for establishing the Platform
2019.4.9-13	Preparatory meeting on the Platform and Field Survey
2019.8.5	Meeting on the Platform (Proposal of adding MoA)
2019.11.2-4	12th GEOSS AP Symposium in Canberra
2019.11.19-20	Consultation of the Platform meeting
2020.1.21-24	Consultation of the Climate Change Orientation

Participants of the Platform meeting

Report to PUPR Minister Dr. Basuki about the Platform meeting

Structure of Climate Change Adaptation Planning

End to End Approach for Climate Change Adaptation

Expected roles of core partner organizations

End to End Approach for Climate Change Adaptation

Expected roles of core partner organizations

Framework of IFI Platform

Necessary Data for Assessment of Climate Change Impact

- Identify responsible organizations for data sharing
- Collect and archive data sets

Dama	age	Hazard Socio-economic			conomic	
Data	Data Source	Data	Data Sou	ırce	Data	Data Source
Casualties & missing person Num. of affected people	DesInventar Database	DTM Runoff Vulnerability Map ✓ Topographic	Local Agencies, etc.		Land use Agriculture Population	Province Census Data, etc.
Agricultural damage	····	✓ Soil Properties ✓ Vegetation density			Infrastructure Industry	
Damage to critical infrastructure		Inundation depth			Drainage facility	
Direct economic loss other than agricultural loss		Rainfall Hydromet River flow			Regional GDP Tax revenue Land price	········
		River cross section Tidal level	···			

Data Specification

	Tidal level		(Point) Digital Paper	Period: Temporal Resolution: Elements:
	Inundation depth (LiDAR)	UP Diliman	Мар	Year: 2016 Area: Davao City Spatial Resolution: 1/500000 Elements: Flood hazard map (100 year return period, 1.5m depth)
	Inundation depth (interview)	PAGASA	Map/Point Digital Paper	Year: Area: Spatial Resolution: Elements:
	Dam operation	NIA	Time series (Point) Digital Paper	Name(s) or Total number: Period: Temporal Resolution: Elements:
	Casualties & missing person	OCD	Statistics Digital Paper	Period: 2012, 2013, 2014, 2015, 2016, 2017 (event-base) Area: Region XI Scale: Nation Region Province City Municipality Barangay Elements: Dead, Injured, Missing
	Affected people	OCD	Statistics Digital Paper	Period: 2012, 2013, 2014, 2015, 2016, 2017 (event-base) Area: Region XI Scale: Vation Region Province City Municipality Barangay Elements: Families, Persons
Damage	Agricultural damage	DA	Statistics Digital Paper	Period: 2010, 2011, 2012, 2014, 2015, 2016 Area: Region XI Scale: Vation Region Province City Municipality Barangay Elements: Affected area, Production loss
Damage	Housing damage	OCD	Statistics Digital Paper	Period: 2012, 2013, 2014, 2015, 2016, 2017 (event-base) Area: Region XI Scale: Nation Region Province City Municipality Barangay Elements: Number of damage houses
	Critical infrastructure damage	DPWH LGU	Statistics Digital Paper	Period: 2012, 2013, 2014, 2015, 2016, 2017 (event-base) Area: Region XI Scale: Nation Region Province City Municipality Barangay Elements: Estimated cost of infrastructure
	Economic damage	LGU NEDA	Statistics Digital Paper	Period: 2012, 2013, 2014, 2015, 2016, 2017 (event-base) Area: Region XI Scale: Nation Region Province City Municipality Barangay Elements: Estimated cost of infrastructure and agriculture

Data from Solo river basin (1)

<u>Damage data</u>

(source: DesInventar Indonesia, 1974-, open)

Example: December 2007 flood in Solo river basin

- Deaths (111), Injured (91), Missing (2)
- Directly affected people= Evacuated (52,402), Indirectly affected people (91)
- Crops (31,865 ha), Irrigation facilities etc.(48)
- Houses heavily damaged (1,705), Houses slightly damaged (11,415), Houses inundated (60,238)
- Education centers(174), Hospitals (34), Pools (1,513), Buildings (1), Worship facilities (403), Fasum (73), Road (59 m?), Forest (1,130 ha)

Example: January 2007 drought in Solo river basin

• Crops damaged (2,191 ha)

Additional Data needed

• Damage amount (Rupiah) by district or village

Hazard data

 Annual average rainfall (mm) 	(BBWS, 94 stations)			
 River discharge (m3/s) 	(BBWS, 1990-2009)			
 Dam reservoir operation 	(BBWS)			
 River water balance 	(BBWS)			
 Digital elevation model 	(USGS, open)			
• Soil type	(FAO, open)			
 Land use 	(USGS, open)			
 Vegetation = Leaf area index 	(NASA, open)			
• Air temperature, Humidity, Wind speed, Radiation, and Surface pressure				
	(JMA, open)			

Additional Data needed

• Recent river discharge (2010-)

Data from Solo river basin (3)

Socio-economic data by regency/municipality (or by province)

(source: Central Jawa Province Census, 2004-, open, East Jawa Province Census, 2003-, open)

- Population
- Paddy area (ha)
- Rice productivity (ton/ha)
- Clean water supply (m3)
- Regional GDP by industry by province
- Regional GDP
- Labor force
- Labor force by industry by province
- Local tax by province
- Domestic capital investment for project
- Foreign capital investment for project
- Investment by industry by province

Additional Data needed

- Economic data by district or village
- Regional GDP by industry, labor force by industry, local tax, capital investment

Example: Data Archiving (Philippines)

Web-base Database Interface

Input Item

Category

Data Type

Resolution

Period

• Area, District

Data Source

Example: Database training (Myanmar)

Date: February 4th and 5th, 2019 Venue: Yangon Technological University

Objectives

Participants learn:

1. Data management of the IFI Platform by DIAS

- 2. Methods and tools for data uploading, and quality control
- 3. Methods and tools for processing climate model (CMIP5) projections of future precipitation for assessment of climate change impacts

Participating Organizations

- Directorate of Water Resources and Improvement of River Systems
- Irrigation and Water Utilization Management Department
- Department of Meteorology and Hydrology
- Department of Disaster Management
- Yangon Technological University

Trainer Organizations

- University of Tokyo
- ICHARM

Hydrological Modeling for A Seamless Approach

- \Box Physical formulations for ET, and soil moisture \rightarrow improve reliability of flood and drought
- Reliable responses to the water cycle variability as well as climate change scenarios Assessment of hydrological extremes with a great confidence
- □ Complete consideration of hydrological cycle with restarting function → enable reliable real-time applications such as flood forecasting
- □ Inputs outputs are compatible with climate and agricultural models → direct coupling for impact assessments

Example: Contingency Planning (Philippines)

Formulation of Plan

Step 6: Sharing disaster contingency plans

Contingency Plan

High Flood (30yrs r.p. Pagbaha na Kagaya ng Pedring, 2011

Example: Near real-time flood forecast (Bago river, Myanmar)

Example: Effect of Dam Operation (Sri Lanka)

Improved dam operation rules are estimated to reduce flood level by 1.5 m.

Wonogiri Reservoir Operation Guidelines

Possibility of reservoir operation using ensemble forecast

Flood season: 1 December to 15 April / Non-flood season: 1 May to 30 November

PLTA: Pusat Listrik Tenaga Air, DICT: Daerah Irigasi Colo Timur, DICB: Daerah Irigasi Colo Barat, DLL: Dengan Lain-Lain source: Operasi Pemantaatan Air Bendungan Serbaguna Wonogiri, Departmen Pekerjaan Umum, Directorat Jenderal Pengairan, Proyek Induk Pengembangan Wilayah Sungai Bengawan Solo, Nopember 1993

Research on Climate Change Impact (SOUSEI Program)

Conclusions of Indonesia Presentation

- 1. Extended hydrometeorological services exist to support the activities of sectors sensitive to weather and climate. Earth observation data are used quite heavily in providing the services.
- 2. Challenges exist to increase the information from standard hydrometeorological services into impact based information which are tailored to the sector's information.
- 3. Indonesia has experienced bush and forest fires these recent years, and the Government has framed some prevention measures that are involved the local communities and corporations.

4. ...

DIGITAL TERRAIN MODEL FOR IDENTIFYING LAND CHARACTERISTIC PRODUCING RUNOFF

- SPATIAL DYNAMIC
 MODEL
- CONSIDER VARIOUS LAND ATTRIBUTES IN DRIVING RUNOFF:
 - ✓ Topographic configuration
 - ✓ Soil Properties
 - ✓ Vegetation density
 - ✓ Depression storage

WFlow is a 3 Dimensional, topographically and physically based: model concepts are related to topographical features: elevation, slope, river networks, land-use and soil type.

Even un-calibrated models provide realistic results as long as you respect physics.

Figure 8.13 Processes in the hydrological cycle

Saturated zone

Flood early warnings

I. Tabel Peringatan Dini Baniir tian Kabupaten dalam Wilayah Sungai 01-11-201

Interactive view based on FEWS Desktop

AFFECTED LOCATION

AREA OF RISK (HA)

46.735.107

REGION/CITY

4.89

PROVINCE

囲

50

DROUGHT

ECONOMIC LOSS (RP.MILYAR)

ENVIRONMENTAL LOSS (HA)

29.820.457

192.737.143

RP

PEOPLE AFFECTED

18.491.666

PHYSICAL LOSS

(RP.MILYAR)

- Total Population (BPS)
 - Total Housess, public facilities, critical facilities (GPS, BIG, Loc.Gov)
 - PDRB Data (Loc.Gov)
 - Land Cover Data (KLHK and BIG

Workplan of Platform Activities in Solo river basin

1. Climate Change Orientation	2. Platform Plenary Meeting	3. DIAS End-user Training	4. Policy Making & Benchmarking WS	
Objective - Contribution adaptation measures development - Encouragement and coordination of Two-layer Multi-stakeholder Engagement	 <u>Objective</u> Status sharing and update of the Platform activities among all members Discussion on further activities of Platform 	Objective - To capacitate end-users on the know-how of DIAS - To maximize the utilization of DIAS	Objective - Contribution to local policy-making on CC - Best practice on the importance, applicability and usability.	
Feb 2020	Mid 2020	2020	2021	
Expected Output - Activity design for CC adaptation - Coordination framework and mechanism for cc adaptation	Expected Output - CC impact simulation for Solo RB - Data integration examples	Expected Output - Data uploading by stakeholders - Data integration products	Expected Output - Policy proposal on CC adaptation to Solo River Basin	

Final outputs

- Develop an Action Plan for Climate Change Adaptation in Solo River Basin
- Propose the inputs of climate change adaptation policies to the National Action Plan for Climate Change Adaptation (RAN-API), and the Water Resources Management Plan in Solo River (POLA and RENCANA)
- Develop a guideline for climate change adaptation planning
- Propose improvement of Reservoir Operation Guideline of Wonogiri Dam

Republic of Inconesia	POLA	RENCANA PENGELOLAAN SUMBER DAYA AIR
NATIONAL ACTION PLAN FOR Climate Change Adaptation (RAN-API) Synthesis Report	PENGELOLAAN SUMBER DAYA AIR WILAYAH SUNGAI BENGAWAN SOLO	BENGAWAN SOLO
NOVEMBER 2013	TAHUN 2010	TAHUN 2015